Influence of thickness and surface composition on the stability of ferroelectric polarization in HfO₂

Adrian Acosta Dr. John Mark P. Martirez Norleakvisoth Lim Prof. Jane P. Chang Prof. Emily A. Carter

MRS Spring Meeting, May 10th, 2022

Department of Chemical and Biomolecular Engineering University of California, Los Angeles, CA 90095

Structural Origin of Ferroelectricity

Comparing perovskites to fluorite ferroelectrics

HfO₂: a superior ferroelectric for nanoscale applications

C

Orbital polarization (a.u.)

Oriented

regime

	I			
Material	$Pb(Zr, Ti)O_3$	SrBi ₂ Ta ₂ O ₉	BiFeO ₃	HfO ₂ -based
$P_r (\mu C/cm^2)$	10-40	5-10	90-95	10-40
E _c (kV/cm)	50-70	30-50	100-1500	2000-5000
ε ₀	~400	~200	~50	~25
Minimum film	>50	>25	>10	~1
thickness (nm)				
CMOS compatibility?	No	No	No	Yes

Conventional Perovskite Ferroelectrics

PbTiO₃

[1] Östling, Mikael, et al. *Thin solid films* 469 (2004): 444-449.
[2] Cheema, Suraj S., et al. Nature 580.7804 (2020): 478-482.

346 348 350 352 35 Photon energy (eV)

Polycrystallin

Thickness (nm)

regime

Ferroelectricity is generally unstable at small thickness for perovskites

Enhanced polarization in FE-HfO₂ at the nanoscale

......

[2]

[1]

Challenges with integrating ferroelectric HfO₂

Film thickness

[4] Batra, Rohit, Huan Doan Tran, and Rampi Ramprasad. Appl. Phys. Lett. 108.17 (2016): 172902

• Generally nonpolar monoclinic phase needs to be kinetically suppressed during crystallization

• Many other factors can contribute to stability of polar orthorhombic phase

How does ferroelectric polarization influence surface stability?

It is necessary to decouple the influence of surface composition & ferroelectric polarization on the surface stability

5 Acosta, A., Martirez, J.M.P., Lim, N., Chang, J.P. and Carter, E.A., 2021. *Phys. Rev. Mater.*, 5(12), p.124417.

DFT-PAW-PBE

How does ferroelectric polarization influence surface stability?

It is necessary to decouple the influence of surface composition & ferroelectric polarization on the surface stability

6 Acosta, A., Martirez, J.M.P., Lim, N., Chang, J.P. and Carter, E.A., 2021. *Phys. Rev. Mater.*, 5(12), p.124417.

DFT-PAW-PBE

Surface Energy of Nonpolar Tetragonal HfO₂

Calculating average surface free energy:

$$\gamma_{avg} = \frac{1}{2A} \begin{pmatrix} G_{slab}(T, P, N_{Hf}, N_0) \\ -N_{Hf}g_{HfO_2}^{bulk}(T, P) \\ +(2N_{Hf} - N_0)\mu_0(T, P) \end{pmatrix}$$
$$\mu_0(T, p) = \mu_0(T, p^\circ) + \frac{1}{2}kTln\left(\frac{p}{p^\circ}\right)$$

Most thermodynamically stable surface composition for a nonpolar slab is <u>1.0-O/1.0-O</u>, which corresponds to a stoichiometric slab

Surface Energy of Polar Orthorhombic HfO₂

The **1.0-O/1.0-O** surface composition is destabilized when ferroelectric polarization is introduced

Most thermodynamically stable surface composition for a polar slab at high temperature is **P+:1.5-O/P-:1.0-O**

8 Acosta, A., Martirez, J.M.P., Lim, N., Chang, J.P. and Carter, E.A., 2021. *Phys. Rev. Mater.*, 5(12), p.124417.

Electrostatic potential profiles provide insights into surface stability

Ionic screening of electrostatic potential alleviates band bending

Effect of Surf. Comp. on HfO₂ Ferroelectric Stability

How does the surface composition influence the ferroelectric stability of HfO₂?

Effect of Surf. Comp. on HfO₂ Ferroelectric Stability

Controlling surface composition can be used to stabilize ferroelectricity in HfO₂

Acosta, A., Martirez, J.M.P., Lim, N., Chang, J.P. and Carter, E.A., 2023. Phys. Rev. Mater., 7(11)

Effect of thickness on polarization of HfO₂

Enhanced ferroelectricity in ultrathin films grown directly on silicon

- 1. No size limit to ferroelectric stability
- 2. Increased polarization with decreasing thickness
 - Large band gap enables stable, increasing polarization at small thicknesses

Acknowledgements & Funding Support

- Dr. John Mark P. Martirez
- Norleakvisoth Lim
- Prof. Jane P. Chang
- Prof. Emily A. Carter
- IDRE Hoffman2 Computing Cluster

